A Note on Semi-bent and Hyper-bent Boolean Functions

نویسندگان

  • Chunming Tang
  • Yu Lou
  • Yanfeng Qi
  • Maozhi Xu
  • Baoan Guo
چکیده

Boolean Function and Block Cipher A Note on Semi-bent and Hyper-bent Boolean Functions . . . . . . . . . . . . . . . 3 Chunming Tang, Yu Lou, Yanfeng Qi, Maozhi Xu, and Baoan Guo New Construction of Differentially 4-Uniform Bijections . . . . . . . . . . . . . . . 22 Claude Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao Automatic Security Evaluation of Block Ciphers with S-bP Structures Against Related-Key Differential Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Semi-bent Boolean Functions

We show how to construct semi-bent Boolean functions from PSaplike bent functions. We derive infinite classes of semi-bent functions in even dimension having multiple trace terms.

متن کامل

The Bent and Hyper-Bent Properties of a Class of Boolean Functions

This paper considers the bent and hyper-bent properties of a class of Boolean functions. For one case, we present a detailed description for them to be hyper-bent functions, and give a necessary condition for them to be bent functions for another case. Keywords—Boolean functions, bent functions, hyper-bent

متن کامل

Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice

Hyper-bent functions as a subclass of bent functions attract much interest and it is elusive to completely characterize hyper-bent functions. Most of known hyper-bent functions are Boolean functions with Dillon exponents and they are often characterized by special values of Kloosterman sums. In this paper, we present a method for characterizing hyper-bent functions with Dillon exponents. A clas...

متن کامل

On generalized semi-bent (and partially bent) Boolean functions

In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...

متن کامل

Generalized Semi-bent and Partially Bent Boolean Functions

In this article, a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function is presented. It is demonstrated for every s-plateaued generalized Boolean function in n variables that σ f = 22n+s. Two constructions on generalized semi-bent Boolean functions are presented. A class of generalized semi-bent functions in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013